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shock motion magnitude and phase angle have been deduced.
A simplified approximate theory is also derived and the
results compared to numerical data.
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Analytical Description
of the Complete Turbulent

Boundary-Layer Velocity Profile

Subscripts
e = boundary-layer edge value
w = wall value

Superscript
( ) = equivalent incompressible value

Introduction

A COMMONLY used analytical representation of tur-
bulent boundary-layer velocity profiles is that of Coles.l

Coles' velocity profile expression is valid from outside the
buffer layer to the edge of the boundary layer, and depends on
the skin friction, boundary-layer thickness, and the profile
parameter II. A new analytical representation of two-
dimensional turbulent boundary-layer velocity profiles is
presented in this Note that is valid for smooth impermeable
walls for the entire domain 0<>><oo. The expression is a
linear combination of two trigonometric functions that
depend on the inner variable y + , the outer variable y/0, and
the parameter's skin friction, shape factor, and Reynolds
number based on momentum thickness. The derivation of this
expression is outlined and examples presented to illustrate the
quality of agreement with experimental data. The application
of this expression is simple and straightforward, and the steps
are summarized in Table 1.
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Nomenclature
a = parameter in Eq. (8)
b = parameter in Eq. (8)
Cj = local incompressible skin friction coefficient,

2fw/pu2

p_ = static pressure
Ree = pue6/fJL
u — mean velocity in the x direction
UT = (cf/2YAue
u + = u/ur
uf = inner solution for u +

u£ = outer expression for w +

x = coordinate along body surface
y = coordinate normal to body surface

- x >
--(d*/fw)(dp/dx)
- equivalent incompressible boundary-layer

!
00

[I — ( u / u e ) ] d yo

- equivalent incompressible boundary-layer

momentum thickness, 6= \ — [1 — ( u / u p ) ] d y
J o ue

- molecular viscosity
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Analytical Development
The analytical expression is required to have the following

properties: 1) recover the solution developed in Ref. 2 for the
inner region, i.e., y+ <0(102); 2) approach the proper
limiting value of u+ -+u+ (or u/ue-+\) as y-~<*>\ and 3)
recover the velocity profiles similar to those correlated by von
Doenhoff and Tetervin3 away from the wall in the outer
variable y/0. The first requirement comprises the inner
solution denoted as u f \ the second and third requirements
comprise the outer solution denoted as UQ. A composite
solution u + is taken as

(1)
The derivation of the inner solution is given in detail in Ref.

2. The significance of the results of Ref. 2 is that a description
of mean turbulence quantities in the inner region was ob-
tained in exceedingly simple mathematical form. This is in-
dicated by Fig. 1 and the corresponding inner solutions for the
velocity, Reynolds stress, turbulence production, and direct
dissipation of mean flow energy given, respectively, as
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Further comments of these inner region results and com-
parisons with experiment are given in Ref. 5.

In contrast to uf, UQ does not have a theoretical
background. The outer variable is taken as y/6 and UQ is
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Table 1 Procedure for computing turbulent boundary-layer velocity profiles
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Step Requirement Comment
are inputs
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derived empirically as follows. Note from Eq. (2) that as
y+ — oo, iif-~ 7T/0.18. Therefore, according to Eq. (1), for ii +
to have the proper limiting value of (2/cy) 1/2 as j>-*oo, w
behave as

^oo. Furthermore, because w^gives the desired result for
small y, ii+ must behave as «J~— >0 as j>— 0. Therefore, the
form

(6)

is considered.
The criterion for choosing g(y/9) was that it be a relatively

simple function that does a reasonable job of describing the
trend of experimental velocity data. The experimental data

Symbols are experimental data reported by Schubauer4

for a pipe and boundary-layer flow, at two Reynolds numbers
for the pipe flow.
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Fig. 1 Turbulence production and dissipation distributions ac-
cording to Eqs. (4) and (5) and the experimental data reported by
Schubauer.4

trends were investigated by solving for g(y/S) from Eq. (6),
using experimental data for u +, y+, and cy, and plotting
g(y/6) vs y/B. An example of the trends is given in Ref. 5 for
favorable and highly adverse pressure gradient flows.

The analytical function used to describe the distribution of
the data is taken as

(7)

where a and b are parameters that are constant for a given
boundary-layer profile and are functions of cf, H, and Ree .
The complete velocity distribution is, therefore, given by

(8)

Sym C f X l O 3 H Refl x 10"3 Source

0.31
0.62
2.64

2.566 12.19 78.988 Stratford7

1.869 73.20 18.939 Perry7

1.297 14.41 -0.270 Bauer7

Eq. (8)

101 102 103

Fig. 2 Adverse and favorable pressure gradient boundary layers
according to Eq. (8) and the experimental data of Stratford et al.7
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where

u_
~ae

The parameters a and b were determined by satisfying the
requirement that velocity profiles similar to those correlated
by von Doenhoff and Tetervin3 be recovered away from the
wall in the outer variable y/S. The precise profiles established
in Ref. 3 were not recovered, because of the fact that
presumably more accurate data were obtained subsequent to
the publication date (1943) of Ref. 3, and also because a
Reynolds number effect on the velocity profiles was reported
(see e.g., Ref. 6) subsequent to the appearance of Ref. 3. The
correlations used were developed in Ref. 5 for two-
dimensional planar flow and are steps 2 and 3 in Table 1.
Table 1 is a summary of the solution to Eq. (8) for a and b at
the two outer region match points of y/d = 2 and 5.

Comparisons with Experimental Data
Experimental data are compared with Eq. (8) in Fig. 2 in

the variables u + and y + . The data of Perry7 were taken in
a decreasing adverse pressure gradient flow, and Stratford's
data7 were taken downstream of an abrupt onset of severe
positive pressure gradient. Both Perry and Stratford's data
are out of equilibrium and Stratford's data are near
separation. Bauer's measurements7 were made in water
falling down a plate glass surface, and this boundary layer
was near equilibrium. The agreement between Eq. (8) and the
data in Fig. 2 is considered good. Note that there is little, if
any, logarithmic region remaining in Stratford's profile.

Further comparisons with experimental data are given in
Ref. 5 that include reattached boundary-layer data and
variable pressure gradient compressible boundary-layer data.
For application to compressible flow, the reader is referred to
Ref. 5.

Summary
The analytical expression presented for the velocity

distribution of a turbulent boundary layer was shown to be in
good agreement with experimental data over the entire
domain 0<>><oo. The analytical result describes ex-
perimental velocity, Reynolds stress, turbulence production,
and turbulence dissipation data in the region near the wall;
matches correlated velocity distributions at y/6 = 2 and 5; and
gives the proper limiting velocity as >>—oo. The resulting
expression gives velocity explicitly as a function of y and
depends on boundary-layer properties that are explicitly
defined.
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Introduction

THE comparison of dynamic analysis and dynamic test
data taken on a linear lightly damped structure rarely

demonstrates complete or acceptable compatibility. A
number of methods have been published and discussed which
assume that the analytical mass matrix is correct and then
modify the measured modes to achieve orthogonality. l~7 The
assumption regarding the accuracy of the mass matrix is
questionable and has been briefly discussed in a recent
Technical Comment.8 The opposite approach has also been
taken which assumes that the measured modes are correct and
modifies the mass matrix to achieve orthogonality.9'10 This
concept has some appeal in that the resulting analytical model
(including a corrected stiffness matrix, as for example in Ref.
6) will exactly predict the results obtained in the test. Other
related approaches which modify analytical matrices based on
a direct comparison of predictions and measurements have
been published. n'12 These approaches are outside the scope of
the present discussion, however.

As a general observation, consider three sets of data: an
analytical mass matrix, an analytical stiffness matrix, and an
incomplete set of measured modes. It is apparent that, if any
one of these sets is assumed to be exact, it is possible to correct
the other two to arrive at a model which is completely
compatible with the measured data.

In Ref. 9, a rather general method of correcting the mass
matrix was presented which allowed the analyst to decide
which elements are to be allowed to vary and to introduce
confidence factors and other external linear constraints. The
method presented below is less general, especially in that all
elements of the matrix will change. This method, however, is
considerably simpler and will require fewer computer
resources. It is probably the appropriate approach for larger
problems. This method uses the method of Lagrange
multipliers and the derivation was inspired by the analysis
presented in Ref. 6.

Analysis
MA is an (n x n) analytical mass matrix and <i> is an (nxm)

measured modal matrix, m is the number of modes and n is
the number of degrees of freedom which must correspond to
the measurement points on the structure and m<n. The
measured individual modes have been normalized so that
$iTMA$i = 1. AM represents changes in the mass matrix
required to satisfy the orthogonality relationship:
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